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Abstract

The assumption of scale-invariance, when taken in conjunction with the
symmetries of the Navier–Stokes equation, is shown to lead to the energy
spectrum E(k) = αε

2/3
T k−5/3, in the limit of infinite Reynolds number. Here εT

is the flux of energy due to inertial transfer, while the prefactor α is determined
by an integral over triple correlations of the phases of the system. It is argued
that this form of the prefactor provides an answer to the Landau–Kraichnan
criticism of the original Kolmogorov (1941) theory (K41).

PACS number: 42.27.Jv

1. Introduction

In 1941, Kolmogorov [1, 2] gave two different derivations of his now-famous result for the
second-order structure function

S2 ∼ ε2/3r2/3, (1)

for L > r > l, where l is a measure of the scale at which viscous effects begin to dominate
(i.e. the internal scale) and L is a measure of the large scales of the system (i.e. the external
scale). The corresponding result for the energy spectrum in wavenumber is

E(k) ∼ ε2/3k−5/3. (2)

Shortly after this work was published, it was criticised by Landau (see the footnote on
page 126 of [3]; and, for a general discussion, the book by Frisch [4]). Kolmogorov [5]
interpreted this criticism as a need to treat the dissipation rate as a variable; and, working with
its average taken over a sphere of radius r, concluded that the right-hand side of equation (1)
should be multiplied by a factor (L/r)μ, where μ is referred to nowadays as an intermittency
correction.
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This work gave rise to many further attempts by other workers to obtain a value for μ.
As a result, for many years K41 has had a question mark hanging over its status as a theory of
inertial-range turbulence. For a discussion and references see the review by Sreenivasan [6].

Given the gnomic quality of Landau’s criticism of K41, it is of interest to note Kraichnan’s
interpretation of it [7]. This is to the effect that the universality of the constant of proportionality
in equation (1) (or in equation (2)) is prejudiced by the fact that the left-hand side of the
equation is an average, whereas the right-hand side is the two-thirds power of an average.
That is, denoting instantaneous quantities by a ‘hat’, we have

〈Ê〉 ∼ 〈ε̂〉2/3k−5/3. (3)

In turn, this leads on to a possible dependence on the macrostatistics, by a theory which is
supposed to deal with a universal equilibrium of the small scales.

Running counter to the belief in ‘intermittency corrections’ and ‘anomalous exponents’,
which has been dominant in recent times, there is now a growing view [8–12] that K41 is
an asymptotic theory, valid in the limit of infinite Reynolds number. As a result, opinion in
the turbulence community is deeply divided on this fundamental issue. Many people seem
to find the K41 picture counter-intuitive when one considers aspects of turbulence such as
vortex-stretching, localness and intermittency.

2. The basic equations

We introduce the basic equations in k-space. The velocity field u(x, t) can be expressed in
terms of its Fourier transform u(k, t), thus

u(x, t) ≡ uα(x, t) =
∫

d3kuα(k, t) exp(ik · x). (4)

The covariance for homogeneous and isotropic turbulence takes the form

〈uα(k, t)uβ(k′, t ′)〉 = δ(k + k′)Cαβ(k; t, t ′) = δ(k + k′)Pαβ(k)C(k; t, t ′), (5)

where the projector Pαβ(k) is expressed in terms of the Kronecker delta as Pαβ(k) =
δαβ − kαkβ/|k|2. The continuity equation becomes

kαuα(k, t) = 0, (6)

and the solenoidal Navier–Stokes equation (NSE) becomes(
∂

∂t
+ νk2

)
uα(k, t) = Mαβγ (k)

∫
d3juβ(j, t)uγ (k − j, t), (7)

where repeated indices are summed. The inertial transfer operator Mαβγ (k) is symmetric
under the interchange of the indices β and γ and is given by

Mαβγ (k) = (2i)−1[kβPαγ (k) + kγ Pαβ(k)]. (8)

It should be noted that the pressure gradient has been eliminated, by using (6) to obtain an
equation expressing it in terms of the nonlinearity, and consequently the right-hand side of
equation (7) is in solenoidal form (as, trivially, is the left-hand side).

The energy spectrum E(k, t) is related to the spectral density by E(k, t) = 4πk2C(k, t).
The procedure to obtain an equation for this is well known. We first multiply each term in
(7) by uσ (−k, t). Then we form a second equation from (7) for uσ (−k, t), multiply this
by uα(k, t), add the two resulting equations together and average the final expression. The
resulting equation is(

∂

∂t
+ 2νk2

)
Pασ (k)C(k, t) = Mαβγ (k)

∫
d3jCβγσ (j, k − j,−k; t)

−Mσβγ (k)

∫
d3jCβγα(−j,−k + j, k; t). (9)
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Here Cαβγ (k, j,−k− j) stands for the three-velocity correlation. We next set σ = α, sum over
α (noting that TrPαβ = 2) and multiply each term in (9) by 2πk2, to obtain the well-known
energy balance equation. We present this later as equation (15). In the meantime, we define
the energy transfer spectrum T (k, t) by

T (k, t) = 2πMαβγ (k)

∫
dj k2j 2

∫
d�j {Cβγα(j, k − j,−k, t)

−Cβγα(−j,−k + j, k, t)}, (10)

where �j stands for the solid angle traced out by vector j when the vector k is chosen as the
polar axis. We may establish its properties, as follows.

We consider the inertial transfer of energy in k-space. Write T (k, t) as

T (k, t) =
∫ ∞

0
S(k, j ; t) dj, (11)

where S depends on the triple moment: its form can be deduced from (10). It can be shown
that S is antisymmetric under the interchange k � j :

S(k, j ; t) = −S(j, k; t). (12)

Hence ∫ ∞

0
T (k, t) dk =

∫ ∞

0
dk

∫ ∞

0
dj S(k, j ; t) = 0 (13)

is an exact symmetry which expresses conservation of energy.
The dissipation rate εD in k-space is defined by εD = −dE/dt for freely decaying

turbulence. Integrating over wavenumber, and rearranging, the energy balance becomes

εD = −dE

dt
=

∫ ∞

0
2νk2E(k, t) dk. (14)

This is because the inertial transfer term vanishes when integrated over all k. The region in
k-space where the dissipation mainly occurs is characterized by the Kolmogorov dissipation
wavenumber. An expression for this is given later on as equation (28).

3. Spectral energy transfer and scale-invariance

In this paper, we shall confine our attention to stationary, isotropic turbulence. In turn, this will
restrict the concept of universality to mean that spectra are independent of initial conditions
or stirring forces. We begin with the energy balance equation(

∂

∂t
+ 2νk2

)
E(k, t) = T (k, t) ≡

∫ ∞

0
dj S(k, j ; t), (15)

as derived in the preceding section. For stationarity we must add an input spectrum W(k)

(which can be related to the covariance of the random stirring forces [13]). We introduce εW

as the rate at which the stirring forces do work on the turbulent fluid

εW =
∫ ∞

0
W(k) dk. (16)

Then, for stationarity, dE(k, t)/dt → 0 and the energy balance becomes

T (k) + W(k) − 2νk2E(k) = 0. (17)

Integrating both sides with respect to wavenumber, we have∫ ∞

0
W(k) dk −

∫ ∞

0
2νk2E(k) dk = 0; or εW = εD. (18)
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The energy flux is introduced when we integrate each term of (15) with respect to
wavenumber, from zero up to some wavenumber κ . Reverting to the general case, using the
antisymmetry of S, and making some rearrangements, we obtain

d

dt

∫ κ

0
dk E(k, t) = −

∫ ∞

κ

dk

∫ κ

0
dj S(k, j ; t) − 2ν

∫ κ

0
dk k2E(k, t). (19)

In this form the effect of the transfer term is readily interpreted as the net flux of energy
from wavenumbers less than κ to those greater than κ , at any time t [14]. Denoting this flux
by (κ), and making an exact decomposition of the transfer spectrum into filtered-partitioned
forms T +−(k|κ) and T −+(k|κ) [15], we have

(κ) =
∫ ∞

κ

dk T +−(k|κ) = −
∫ κ

0
dk T −+(k|κ), (20)

where we have now assumed stationarity and dropped the time dependence. (Note that the
decomposition is completed by T −−(k|κ) and T ++(k|κ), which are separately conservative on
the intervals [0, κ] and [κ,∞], respectively [15].)

The maximum value of the energy flux is max(κ), where T +−(k|κ) = T −+(k|κ) = 0. At
sufficiently large Rλ, the energy containing and dissipation ranges become separated by the
inertial range of wavenumbers, thus

kbot � κ � ktop, (21)

where κ now stands for any wavenumber in the inertial range. In this case, the injection and
dissipation spectra satisfy approximate relationships as follows:∫ kbot

0
dkW(k) 	 εW ; and

∫ ∞

ktop

dk 2νk2E(k) 	 εD. (22)

Also, in this range of wavenumbers, the maximum energy flux should be approximately
constant and we will find it helpful to introduce a specific symbol for this quantity, thus

max = εT . (23)

For stationarity, we must have the overall energy balance

εW = εT = εD. (24)

We note that these three different physical processes are normally denoted by the single
symbol ε, justified by their all being numerically equal. In our view, it is necessary to draw a
distinction between them in order to avoid confusion.

To sum this up, we can claim to have a scale invariant inertial range of wavenumbers if
the following is satisfied:

T +−(k|κ) = T −+(k|κ) = 0; and (κ) =
∫ ∞

κ

dk T +−(k|κ) = max(κ) = εT ,

(25)

for constant εT , and where κ is any wavenumber in the range given by (21). Recent results
suggest that this becomes increasingly true as the Reynolds number is increased to large values
[16].

4. The inertial-range energy spectrum

Let us now reconsider K41 in the light of the foregoing discusssion. The first of Kolmogorov’s
two methods amounted to a statement of similarity principles, along with the use of dimensional
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analysis. In general, the energy spectrum may depend on any relevant parameter, and for some
wavenumber k we may write it as a general functional form

E(k) = F [W(k),(k), εT , k, ν, εD]. (26)

For wavenumbers satisfying the limits in (21), the general form given by equation (26) reduces
to

E(k) = αε
2/3
T k−5/3f (k/kD), (27)

where α is the prefactor; and, in the limit of infinite Reynolds numbers, f → f (0) = 1; while
the dissipation wavenumber is given by

kD = (εD/ν3)1/4. (28)

It is usual to replace εT in equation (27) by εD (actually, by ε). However, the dynamically
significant quantity is the inertial flux and we shall leave it as it is, in order to emphasise that
fact. We note that in fractal-generated turbulence, the Kolmogorov-like spectrum depends on
(u′3/L)2/3, rather than on ε

2/3
D [17]. Also, note that the function f depends on εD through the

dissipation wavenumber.

4.1. Calculation of the prefactor

Kolmogorov’s second method was based on the Karman–Howarth equation, an exact relation
connecting the structure functions S3 and S2. By setting ν = 0 (its effect is retained through
the dissipation rate) he obtained a closed equation for S3. The result of this de facto closure is
widely accepted by the turbulence community, but the need to make the additional assumption
that the skewness is constant in order to recover (1) is seen as a weakness.

The spectral equivalent of the Karman–Howarth equation is the energy balance given by
equation (15). In order to obtain a de facto closure, we use scale-invariance, in the form (25),
along with equation (10) for T (k), to fix the form of the triple moment, thus

2π

∫ ∞

κ

dk Mαβγ (k)

∫ κ

0
dj k2j 2

∫
d�j {Cβγα(j, k − j,−k, t)

−Cβγα(−j,−k + j, k, t)} = εT . (29)

Now, we introduce a dimensionless form of uα(k, t) in the neighbourhood of wavenumber
κ , by writing

uα(k, t) = V (κ)ψα(k′, t ′), (30)

where V (κ) is the root-mean-square velocity, k′ = k/κ , and t ′ = t/τ (κ). The timescale τ(κ)

is to be determined, but is not actually needed for our present purposes.
We will discuss the significance of the function ψα(k′, t ′) presently. For the moment,

from equation (30) it follows, by equation (5) and the usual definition of the root-mean-square
velocity, that it must satisfy the condition

〈ψα(k′, t)ψβ(j′, t)〉 = Pαβ(k′)δ(k′ + j′). (31)

Also, it is readily shown that the two-velocity and three-velocity correlations may be expressed
in terms of (30) as

Cαβ(k) = Pαβ(k′)κ3V 2(κ), (32)

and

Cαβγ (k, j,−k − j) = κ3V 3(κ)〈ψα(k′)ψβ(j′)ψγ (−k′ − j′)〉. (33)
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This is now the crucial stage of the argument. There are both theoretical and experimental
grounds for assuming that the integral in (29) is, when k = κ (i.e. in the inertial range),
dominated by interactions with j ∼ |k − j| ∼ k = κ [14]. However, we can go further than
this. We can make use of the exact symmetry

S(k, j) = 0 for the case j = |k − j| = k, (34)

which corresponds to a zero of the transfer spectrum and hence to a maximum for the flux
through wavenumber κ .

4.2. The limit of infinite Reynolds number

Next we take the limit of infinite Reynolds numbers at a constant rate of energy transfer (or
dissipation). This implies that the input and output can be concentrated into delta functions in
wavenumber, at the origin and infinity, respectively [18]. (Or, for a more accessible reference,
see section 6.2.7 of the book [13].) Thus the condition (34) will apply for all wavenumbers.
As uα(k, t) is complex, we note that V (κ) is its amplitude and that ψα(k′, t ′) represents its
phase; that is, ψα(k′, t ′) = exp[iθα(k′, t′)] [14].

With these points in mind, we substitute equation (33) into (29), transform to scaled
variables, invoke stationarity, and integrate over all wavenumbers with k′ outside, and j ′

inside, (say) the unit sphere. In this way, it is readily shown by power counting that the
root-mean-square velocity in wavenumber space must take the form

V (κ) = B−1/3ε
1/3
T κ−10/3, (35)

where

B = 2π

∫ ∞

1
dk′

∫ 1

0
dj ′k′2j ′2

∫
d�j ′Mαβγ (k′)[〈ψβ(j′, t ′)ψγ (k′ − j′, t ′)ψα(−k′, t ′)〉

−〈ψβ(−j′, t ′)ψγ (−k′ + j′, t ′)ψα(k′, t ′)〉]. (36)

Substituting this result into equation (32), and using (5) for the spectral density C(k), we
obtain the inertial range spectrum in the form

E(κ) = 4πκ2C(κ) = αε
2/3
T κ−5/3. (37)

The prefactor is now given by α = 4πB−2/3, and κ is any wavenumber in the inertial range.

5. Conclusion

This would appear to provide an answer to the criticism of K41 by Landau, as interpreted by
Kraichnan [7]. Essentially, Kraichnan said that the presence of an average (whether εT or
εD) to the power of 2/3 on the right-hand side of equation (37) destroys the linearity of the
averaging procedure for that equation. According to our present analysis, that dependence is
cancelled out by the presence of the factor B−2/3.

In conclusion, on the assumption of scale-invariance (in the form set out in equation (29)),
the symmetries of the Navier–Stokes equation lead to the ‘−5/3’ law for the energy spectrum.
Arguably, from the arguments given in [18] (or see [13]), scale-invariance is inevitable in the
limit of infinite Reynolds numbers.
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